Predicting the Computational Performance of Neural Circuits Modeled with Simple Digital Neurons
نویسنده
چکیده
....................................................................................................................................... v CHAPTER 1: INTRODUCTION ............................................................................................................ 1 1.1 Artificial neural networks ....................................................................................................... 1 1.2 Spiking neural networks ......................................................................................................... 1 1.3 Hardware implementation of neural networks ..................................................................... 2 1.4 Liquid State Machines ............................................................................................................ 4 1.5 Readouts ................................................................................................................................ 7 1.6 Measurable qualities of a neural circuit ................................................................................ 8 1.6.1 Firing rates....................................................................................................................... 9 1.6.2 Lyapunov’s exponent .................................................................................................... 10 1.6.3 Class separation ............................................................................................................ 11 1.6.4 Spectral radius ............................................................................................................... 12 1.6.5 Kernel-quality and VC dimension .................................................................................. 12 1.7 Objective and motivation .................................................................................................... 13 1.8 Thesis outline ....................................................................................................................... 13 CHAPTER 2: PREDICTING THE COMPUTATIONAL PERFORMANCE OF A NEURAL CIRCUIT A MATHEMATICAL BACKGROUND .................................................................................................... 15 2.1 The two defining properties of a neural circuit ................................................................... 15 2.2 Kernel-quality ....................................................................................................................... 15 2.3 Generalization property ....................................................................................................... 16 2.3.1 Shattering a set ............................................................................................................. 17
منابع مشابه
Modeling and Simulation of Substrate Noise in Mixed-Signal Circuits Applied to a Special VCO
The mixed-signal circuits with both analog and digital blocks on a single chip have wide applications in communication and RF circuits. Integrating these two blocks can cause serious problems especially in applications requiring fast digital circuits and high performance analog blocks. Fast switching in digital blocks generates a noise which can be introduced to analog circuits by the common su...
متن کاملStatic Simulation of CNTFET-based Digital Circuits
In this paper we implement a simple DC model for CNTFETs already proposed by us in order to carry out static analysis of basic digital circuits. To verify the validity of the obtained results, they are compared with those of Wong model, resulting in good agreement, but obtaining a lighter ensuring compile and shorter execution time, which are the main character...
متن کاملA fast wallace-based parallel multiplier in quantum-dot cellular automata
Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...
متن کاملFading memory and kernel properties of generic cortical microcircuit models.
It is quite difficult to construct circuits of spiking neurons that can carry out complex computational tasks. On the other hand even randomly connected circuits of spiking neurons can in principle be used for complex computational tasks such as time-warp invariant speech recognition. This is possible because such circuits have an inherent tendency to integrate incoming information in such a wa...
متن کاملA fast wallace-based parallel multiplier in quantum-dot cellular automata
Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015